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Let M(l) := {J: I is a real-valued function that is bounded and measurable on an
m-dimensional compact interval I} and let L: M(l) --> M(l) be a multivariate
positive linear operator. The aim of this paper is to give estimates for the
approximation error's Lp-norm III- L/li p using the so-called averaged modulus of
smoothness or ,-modulus of first order. © 1989 Academic Press, Inc.

1. INTRODUCTION

While the univariate averaged modulus of smoothness or i-modulus has
been applied to give estimates for many different purposes (see the
monograph [12J for a detailed treatment), the multivariate analog has up
to now only been studied in connection with multivariate trigonometric
best approximation [5,6J and the function spaces that are generated by
these multivariate i-moduli [7]. Univariate results concerning estimates for
the approximation error of general positive linear operators have been
given in [4J via the first-order modulus and in [8, 10] via the second
order modulus. In the following the multivariate i-modulus will be used for
the first time in the context of positive linear operators by establishing
a multivariate analogon of Popov's theorem [4] as presented in [9].
Although the theorem stated here is quite similar to the univariate one, the
techniques used are completely different because the methods of the
univariate proof fail for the multivariate case. Therefore interpolation
results of Riesz-Thorin type for the i-modulus had to be devised instead.

At first, it might be useful to give the detailed definitions of the usual
multivariate modulus of smoothness and the multivariate i-modulus which
are both quite straightforward generalisations of the univariate ones.

Let/: / ~ IR be a function defined on the compact interval [£ IR m
, mE N.
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Let Ixl denote the maximum norm of a point x E [Rm. For kEN and hE [Rm,

let L1~/(x) denote the kth order difference of step h at the point xEI, i.e.,

if x, x+khEI

in all other cases.

Let Lp(I):= {f: / p-integrable on I}, 1~ p < 00, and Loo(I):= {f: /
bounded on I} while II ·11 p refers to the corresponding norm.

Finally let C stand for a positive real constant, the value of which may
be different at each occurrence.

DEFINITION 1.1. Let / E Lp(I), 1~ p ~ 00, and kEN, c5 E [R +. The usual
(multivariate) modulus of smoothness of order k and step c5 for the
function / in Lp-norm is defined as

(i) OJk(f; c5)p:= sup (f 1L1~(x)IP dx)!IP for 1~p< 00
O<jhl;:;o /

(ii) OJk(f;c5)oo:=sup{IL1U(x)l:x,x+khEI, Ihl~c5}.

Furthermore, let M(I) := {f:/bounded and measurable on I}. For these
functions the ,-modulus can be given as follows:

DEFINITION 1.2. Let/EM(I), kEN, and c5E[R+.

(i) The (multivariate) local modulus of smoothness of order k for
the function / at the point x E I and for step c5 is defined as

where

(ii) The (multivariate) averaged modulus of smoothness or
r-modulus of order k for the function / and step () in Lp-norm is given as

l~p~oo.

Thus the process of taking Lp-norms first and a supremum afterwards
(as for the usual modulus of smoothness) is reversed for the definition
of the r-modulus. In the following some properties of the multivariate
r-modulus are stated which will be used later.

Note that by a = (a!, ..., am) an m-dimensional multi-index is denoted
with lal = L;:'! a; as its norm and Dj as its corresponding partial
derivative of the function f
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LEMMA 1.1. Let f, g E M(I), kEN, 1~ p ~ 00, and 15,15', AE IR +. Then
the multivariate ,-modulus of order k has the following properties

(i) 'k(f; b)p ~ 'k(f; b')p for 0 < 15 ~ 15',

(ii) 'k(f + g; b)p ~ 'k(f; b)p + 'k(g; b)p,

(iii) 'k(f;b)p~2'k_I(f;k/(k-1).b)pfor k~2,

(iv) 'k(f; Ab)p ~ (2]),[ + 2)k+m 'k(f; b)p,

(v) '1(f;b)p~2LI"If';lbl"IIIDJllp, ()(i=O or 1, if D"fELp(I) for all
multi-indices ()( with I(XI ~ 1, (Xi = 0 or 1,

(vi) wk(f; b)p ~ 'k(f; b)p, Wk(f; 15)00 = 'k(f; 15)00'

For detailed proofs of these properties see [7] or [8].

2. THE GENERAL RESULT

Without loss of generality only the case m = 2 will be considered to sim
plify notation and to avoid a too complicated use of indices. All techniques
that are used. in the following text can be easily generalized for the case of
three or more variables.

The aim is to prove the following multivariate analogon of Popov's
univariate result [4] concerning estimates for the approximation error of
positive linear operators via the first-order ,-modulus.

THEOREM 2.1. Let 1:= [ai' bl ] x [az, bz] and let L: M(l) ~ M(I) be a
positive linear operator (i.e., a linear operator for which f~ 0 implies Lf~ 0
for any fE M(I)) satisfying the following conditions (using the notation
eijt l , (z) :=t\ti, i,j=O, 1,2):

Leo,o= eo,o

Lel,o(x) = XI + (XI(X)

Leo,l(x) = Xz + (Xz(x)

Lez,o(x) = xi + f31 (X)

Leo,z(x) = x~ + f3z(x)

andfor M:= max( 11f31 - 2el,o(X111 00' IIf3z- 2eo,1 (Xzll 00) let M ~min(l, (b l -al )4,
(b z - az)4),

Then for f E M(I) the following estimate holds,
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.={O. 1

where the positive constant C is independent of the operator L and the
functionf

While Popov's techniques in the univariate case [4] allow a
straightforward proof for any p-norm, 1:;:; p:;:; 00, some crucial estimates
cannot be generalised for the multivariate case. Instead, the single cases
p = 1 and p = 00 are proven first, followed by the use of a Riesz-Thorin
type interpolation theorem for the case 1 < p < 00.

3. THE CASE P = 1

To prove Theorem 2.1 for the case p = 1, a lemma is used that is similar
to the univariate lemma in [4], giving estimates for the approximation
error of truncated power functions (J e by finding suitable parabolas that are
always greater (or always less) than the function (Je'

LEMMA 3.1. Let the conditions of Theorem 2.1 hold. For any
C = (c l , cz) E I define a function (J e: [Rz ~ [R by

(J e(t 1> tz) := (t j - cd~l_ (tz - cz)~

for t j <Cj or tz<cz

for tj~Cj and tz~cz·

Then for ee :=L(Je-(Jc and xEI the following estimates hold

(i) IeAx)1 :;:;M(c l -xd- z if X j < C j ,

(ii) leAx)1 :;:;M(cz-xz)-Z ifxz<cz,

(iii) leAx)l:;:; M((c j - xd- z+ (cz - xz)-Z) if X j > C j and Xz > Cz,

(iv) leAx)l:;:; 1 for all xEI,

(v) Ilecll l :;:; eft, the positive constant C being independent of the
operator L.

Proof of Lemma 3.1. Note first that for the parabolas

and (xElfixed)

we have M = sup {LljJxl(x), LljJx2(X): x EI}.
First let XEI and aj:;:;xj<c j, xzE[az,bz], which implies (JAx)=O.

Then for the parabola Gxl' defined by GxJt):= (c j -xj)-ZljJxl(t), tEl), it
holds that 0:;:; (J c :;:; GXl'

Applying the operator L and using its properties, we obtain after
evaluating at the point x:O:;:;L(JAx):;:;(cl-xl)-zLljJxJx) and therefore
(i). For x E I, az :;:; Xz < Cz, Xl E [aj, b j ], the parabola GX2(t):=
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(C2 X2)-2lj;xz(t), tEl, can be used similarly to show (ii). For xEI,
CI < x I ~ bl , C2< X2~ b2, we have O",.{x) = 1. In this case for the parabola
Hx(t) := (c l - xd -2lj;Xj(t) + (C2 - x 2)-2lj;xz(t), tEl, the estimates 1~ 0" c ~

1 - H x hold, which in due course give (iii). As 0 ~ 0" c ~ 1 implies 0 ~
LO"c ~ 1, we get (iv). Finally, for 0 < h ~ C2 - a2

f
CZ - hfbi

le,.{xl, x 2 )1 dX I dX2 ~ (b l - a l ) Mh- 1

a2 at

Similarly, for suitable h we obtain

and

and

follows from (ii).

from (iv),

from (i)

and r+JMt
C2~JM at

from (iii).

if jM> C2 - a2 and so on)

the proposition of (v) can be shown. I

Suitable functions Pi, Qf are required such that the error f - Pf is always
negative, f - Qf is always positive, and for which f - Pi, f - Qf,
Pf - L(Pf), Qf - L(Qf) can be estimated via the first-order ,-modulus.

LEMMA 3.2. Let the conditions of Theorem 2.1 hold. Then for every
f E M(l) there exist functions Pi, QfE M(l), such that the following estimates
hold:

(i) Qf~f~ Pf;

(ii) Ilf - Pflll ~ C, I (f; 1M) I' Ilf - Qflll ~ C, I (f; 1M) 1 ;

(iii) IIPf- L(Pf)lll ~ C'l(f; 1M)l, IIQf -L(Qf)lll ~ C'I(f; 1M)l.

The positive constants are independent of the operator L and the function f
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Proof As M ~ min(1, (b l - a l )4, (b z - az)4), it is possible to choose
nbnZEN, n b nz ~ 2, so that h l := (b l - al)/n l ~ 1M~ (b l - al)/(n l -1) ~
2h l and hz:=(bz-az)/nz~fi~(bz-az)/(nz-l)~2hz. Using these
fixed steps hi and hz, equidistant knots can be defined by t l,i := a l + ih b
i = 0, 1, ..., n l , in the interval [ai' b l ] and tZ,j := az + jhz , j = 0, 1, ..., nz , in
the interval [a z, bz], and thus a decomposition of the interval I is attained
by setting

Ii,j:= [tl,i, tl,i+ d x [tz,j' tZ,j+ d
for i=0, ...,n l -2,j=0, ...,nz-2

In1-I,j:= [tl,nl-b tl,nJ x [tz,j, tZ,j+l)

for j=O, ..., nz-2

Ii,n2-1:= [tl,i, tl,i+l)X [tz,n2-1, tZ,n2]

for i = 0, ..., n I - 2

Denoting by Itj the closure of the interval Ii,j and setting
3 := {a, ..., n l -I}, 3 := {a, ..., nz -I}, we define

Pi,) := sup {f(t): t E ItJ,

Qi,j := inf{f(t): tElL} for i E 3, j E 3.

Using these definitions the functions PI, QfE M(I) are introduced by
setting

Pf(t) := Pi,j, Qf(t) := Qi,j for tEIi,j, iE3,jE3.

It must be shown now that Pf and Qf have the desired properties.
Certainly, (i) holds by definition. Another immediate consequence is the
inclusion

for t E Ii,j, i E 3, j E 3, and

from where the inequality If(t)-Pf(t)l~wI(f,t;2Ihl) for tEl can be
found. Integration gives Ilf - Pflll ~ r l(f; 21hl)1 and the proposition of (ii)
for Pf follows by taking account of the definition of h and by applying
Lemma 1.1 (i), (iv). The second part of (ii) can be shown in a similar
manner.

We now use the truncated power functions as introduced in Lemma 3.1
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to give another representation of the function Pf (writing (J " J instead of

(J!l,/>12,)'

111-1 112 - 1

Pf(t)= L L (P"j-Pi,J-I- Pi-l,j+P'-I,i-J(J,jt)
i~O j~O

for tEl, setting Pi, -1 := P -1,j := 0. This equality can be verified by
straightforward calculation. Application of the operator L yields for tEl

n1 - 1 112 - 1

IL(Pf)(t)-Pf(t)I;£ L L IP"j-Pi,j-l
,~o j~O

- Pi-I,j +Pi-l,i-ll IL(J',i(t) - (J,jt)l·

As IPi,j-P"j-I-Pi-l,j+Pi-l,j-11 ;£2w l(1, (tl,,, t2.J;2Ihl) for i>O or
j>O and (Jo,o=eo,o (which implies L(Jo,o=eo,o), it is found that after
integrating the above inequality

111- 1112- 1

IIL(ff)-Pflll;£ L L 2w l(1, (tu' t2,j);2Ihl) IIL(Ji,j-(Ji)11
,~o j~O

holds.
Applying Lemma 3.1 (v) and recalling the relation between .fAi and h,

the inequality

111-1 n2- 1

IIL(Pf)-Pflll;£C L L f Wl(1, (tl,i, t2,J;2I hl)dt
i~O j~O I"j

is obtained.
As Qlhl(tl,i, t2,j)SQ2Ihl(t) holds for tEI',j' we have wl(1, (tl,i, t2.J;

21hl) ;£ WI (1, t; 41hl) for t E I',j and therefore IIL(Pf) - Pflll ;£ Cr I (I; 41hl )1'

The proposition of (iii) for Pf now follows from Lemma 1.l(i), (iv). The
one for Qf can be similarly shown. I

Proof of Theorem 2.1 for the case p = 1. The functions Pf and Qf
introduced in Lemma 3.2 are used. As Ilf - Lfll!;£ lif - Pflll +
IIPf - L(Pf)lll + IIL(Pf) - Lflll' by applying Lemma 3.2(i) the following
inequality is obtained:

II L( Pf) - Lflll ;£ II L(Pf) - L(Qf) III

;£ IIL(Pf) - Pflll + IIPf - fill

+ Ilf - Qflll + IIQf-L(Qf)111'

The proposItlon of Theorem 2.1 can now be shown by usmg
Lemma 3.2(ii), (iii). I
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4. THE CASE P = 00

Proof of Theorem 2.1 for the case p = 00. As r 1(f; (j) 00 = WI (f; (j) 00

holds by Lemma 1.1(vi), it is possible to emulate the univariate proof of a
theorem by Lupa~ and Mi.iller [3].

Let J..1,[ denote the greatest integer that is strictly less than ..1, E IR.
Furthermore let (j E JR + and keep x E I fixed. Then for tEl and It - xl ~ (j
we get If(t)- f(x)1 ~Wl(f; (j-llt-xl (j)oo and by a well-known property
of the usual modulus of smoothness (see, for example, [11 J)
If(t) - f(x)1 ~ (1 + J(j -11 t - xl [) w1(f; (j)oo'

As It-xl=ltj-x;l for j=l or j=2, we obtain If(t)-f(x)l~

(1 + (j -2ljJ x (t» WI (f; (j)ooo This inequality also holds for tEl and It - xl < (j
J

since in this case J(j -11 t - xl [ = O. Now it is possible to apply the
operator L and to evaluate the resulting inequality at the point x, thereby
showing ILf(x)- f(x)1 ~ (1 +(j-2M) Wl(f; (j)oo for XEI and finally that·
IILf - fll 00 ~ (1 + (j -2M) w 1(f; (j)oo' Setting (j:= jM, as M ~ 1,

IILf - flloo ~ Cw 1(f; jM)oo ~ Cw 1(f; iM)oo is obtained. I

5. THE CASE 1 < P < 00

The proposition of Theorem 2.1 for 1 < p < 00 follows from the results
for the cases p = 1 and p = 00 by making use of the following interpolation
theorem of Riesz-Thorin type for positive linear operators.

THEOREM 5.1. Let L: M(I) ~ M(I) be a positive linear operator, so that
for ft, p*, 1~ ft, p* ~ 00, and a (j E JR + the following estimates hold;

IILf - flip ~ Cr 1(f; (j)p,

IILf - flip' ~ Crl(f; (j)p' for every f E M(I),

the positive constants C being independent of the operator L, the function f,
and the numbers ft, p*.

Then for every f E M(I) the following estimate holds true:

IILf - flip ~ Cr 1(f; (j)p,

if
1 1-8 8
-=--+
P ft p*

for 8 E JR, 0 < 8 < 1.

Here the positive constant C is independent of the operator L, the function f,
and the used norm, too.

For the proof of interpolation theorems for r-moduli see [1,2].
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6. A COROLLARY TO THEOREM 2.1

285

Using Lemma 1.1(v) it is now possible to give as an immediate
consequence of Theorem 2.1

COROLLARY 6.1. Let the conditions of Theorem 2.1 hold and let f E M(I),
having partial derivatives DI,0j, DO' If, and Dl,lfE Lp(l), 1~ p ~ 00, Then the
following estimate holds,

the positive constant C being independent of the operator L and the
function f

A further investigation of this estimate shows that for p = 00 we have

IILf - fll CD ~ C(.JM IIDI,ofll CD +.JM liDO, If II CD)'

which means that the term JM liD 1, If II CD can be dropped in this case. On
the other hand, a s~itable example can be found to show that the term
JM IIDI,lfll p is necessary for the cases 1~ p < 2 and cannot be dropped
from the estimate. See [8] for a detailed consideration. It still remains to
be shown what happens for 2 ~ p < 00.

Remark. All techniques used in the preceding treatment can be readily
transferred to the case of dimension m, m ;:.;; 3. Without going into details, it
should be noted that the result is (see [8]):

Let L: M(l) ~ M(I) be a positive linear operator that preserves
constants. Then for every f E M(I) and 1~ p ~ 00 the following estimate
holds,

IILf - flip ~ C'I(f; 2::jM)p,

where M :=sup{Ll/J;(x): i= 1, ..., m, XEI} (l/J;{t):= (t;-X;)2 for fixed xEI
and i= 1, ... , m) and M~mini=I, .. ,m(1, (hi-aym).
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